
Package ‘BiocGenerics’
February 14, 2013

Title Generic functions for Bioconductor

Description S4 generic functions needed by many other Bioconductor packages.

Version 0.4.0

Author The Bioconductor Dev Team

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

biocViews Infrastructure

Depends methods, graphics, stats

Imports methods, graphics, stats

Suggests Biobase, IRanges, GenomicRanges, AnnotationDbi, oligoClasses,oligo, affyPLM, RUnit

License Artistic-2.0

Collate connection-classes.R boxplot.R cbind.R density.R duplicated.R
eval.R Extremes.R funprog.R get.R image.R lapply.R mapply.R
nrow.R order.R paste.R rep.R residuals.R row_colnames.R sets.R
table.R tapply.R unique.R weights.R xtabs.R annotation.R
combine.R strand.R updateObject.R testPackage.R test_BiocGenerics_package.R zzz.R

R topics documented:
BiocGenerics-package . 2
annotation . 4
boxplot . 4
cbind . 5
combine . 6
connection-class . 8
density . 9
duplicated . 10
eval . 11
Extremes . 12
funprog . 13
get . 14
image . 15
lapply . 16
mapply . 17

1

2 BiocGenerics-package

nrow . 18
order . 19
paste . 20
rep . 21
residuals . 22
row+colnames . 23
sets . 24
strand . 25
table . 26
tapply . 27
unique . 28
updateObject . 29
weights . 31
xtabs . 32

Index 33

BiocGenerics-package Generic functions for Bioconductor

Description

S4 generic functions needed by many other Bioconductor packages.

Details

We divide the generic functions defined in the BiocGenerics package in 2 categories: (1) functions
already defined in base R and explicitly promoted to generics in BiocGenerics, and (2) Bioconductor
specific generics.

(1) Functions defined in base R and explicitly promoted to generics in the BiocGenerics
package:
From package base:

• BiocGenerics::cbind, BiocGenerics::rbind
• BiocGenerics::duplicated, BiocGenerics::anyDuplicated
• BiocGenerics::eval
• Extremes: BiocGenerics::pmax, BiocGenerics::pmin, BiocGenerics::pmax.int, BiocGener-
ics::pmin.int

• funprog: BiocGenerics::Reduce, BiocGenerics::Filter, BiocGenerics::Find, BiocGener-
ics::Map, BiocGenerics::Position

• BiocGenerics::get, BiocGenerics::mget
• BiocGenerics::lapply, BiocGenerics::sapply
• BiocGenerics::mapply
• BiocGenerics::nrow, BiocGenerics::ncol, BiocGenerics::NROW, BiocGenerics::NCOL
• BiocGenerics::order
• BiocGenerics::paste
• BiocGenerics::rep.int
• BiocGenerics::rownames, BiocGenerics::colnames
• sets: BiocGenerics::union, BiocGenerics::intersect, BiocGenerics::setdiff

BiocGenerics-package 3

• BiocGenerics::table
• BiocGenerics::tapply
• BiocGenerics::unique

From package graphics:

• BiocGenerics::boxplot
• BiocGenerics::image

From package stats:

• BiocGenerics::density
• BiocGenerics::residuals
• BiocGenerics::weights
• BiocGenerics::xtabs

(2) Bioconductor specific generics:
• annotation, annotation<-
• combine
• strand, strand<-
• updateObject

Note

More generics can be added on request by sending an email to the Bioc-devel mailing list:

http://bioconductor.org/help/mailing-list/

Things that should NOT be added to the BiocGenerics package:

• Internal generic primitive functions like length, dim, ‘dim<-‘, etc... See ?InternalMethods
for the complete list. There are a few exceptions though, that is, the BiocGenerics package
may actually redefine a few of those internal generic primitive functions as S4 generics when
for example the signature of the internal generic primitive is not appropriate (this is the case
for BiocGenerics::cbind).

• S3 and S4 group generic functions like Math, Ops, etc... See ?groupGeneric and ?S4groupGeneric
for the complete list.

• Generics already defined in the stats4 package.

Author(s)

The Bioconductor Dev Team

See Also

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

setGeneric and setMethod for defining generics and methods.

Examples

List all the symbols defined in this package:
ls(’package:BiocGenerics’)

http://bioconductor.org/help/mailing-list/

4 boxplot

annotation Accessing annotation information

Description

Get or set the annotation information contained in an object.

Usage

annotation(object, ...)
annotation(object, ...) <- value

Arguments

object An object containing annotation information.

... Additional arguments, for use in specific methods.

value The annotation information to set on object.

See Also

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

annotation,eSet-method in the Biobase package for the method defined for eSet objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

annotation
showMethods("annotation")

library(Biobase)
showMethods("annotation")
selectMethod("annotation", "eSet")

boxplot Box plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

NOTE: This man page is for the boxplot S4 generic function defined in the BiocGenerics package.
See ?graphics::boxplot for the default method (defined in the graphics package). Bioconductor
packages can define specific methods for objects not supported by the default method.

Usage

boxplot(x, ...)

cbind 5

Arguments

x, ... See ?graphics::boxplot.

Value

See ?graphics::boxplot for the value returned by the default method.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default method.

See Also

graphics::boxplot for the default boxplot method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

boxplot,FeatureSet-method in the oligo package for the method defined for FeatureSet objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

boxplot
showMethods("boxplot")
selectMethod("boxplot", "ANY") # the default method

cbind Combine R objects by rows or columns

Description

cbind and rbind take a sequence of R objects arguments and combine them by columns or rows,
respectively.

NOTE: This man page is for the cbind and rbind S4 generic functions defined in the BiocGenerics
package. See ?base::cbind for the default methods (defined in the base package). Bioconductor
packages can define specific methods for objects (typically vector-like or matrix-like) not supported
by the default methods.

Usage

cbind(..., deparse.level=1)
rbind(..., deparse.level=1)

Arguments

... One or more vector-like or matrix-like R objects. These can be given as named
arguments.

deparse.level See ?base::cbind for a description of this argument.

6 combine

Value

See ?base::cbind for the value returned by the default methods.

Specific methods defined in other Bioconductor packages will typically return an object of the same
class as the input objects.

See Also

base::cbind for the default cbind and rbind methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

cbind,DataFrame-method in the IRanges package for the cbind method defined for DataFrame
objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

cbind # note the dispatch on the ’...’ arg only
showMethods("cbind")
selectMethod("cbind", "ANY") # the default method

rbind # note the dispatch on the ’...’ arg only
showMethods("rbind")
selectMethod("rbind", "ANY") # the default method

combine Combining or merging different Bioconductor data structures

Description

The combine generic function handles methods for combining or merging different Bioconductor
data structures. It should, given an arbitrary number of arguments of the same class (possibly
by inheritance), combine them into a single instance in a sensible way (some methods may only
combine 2 objects, ignoring ... in the argument list; because Bioconductor data structures are
complicated, check carefully that combine does as you intend).

Usage

combine(x, y, ...)

Arguments

x One of the values.

y A second value.

... Any other objects of the same class as x and y.

combine 7

Details

There are two basic combine strategies. One is an intersection strategy. The returned value should
only have rows (or columns) that are found in all input data objects. The union strategy says that
the return value will have all rows (or columns) found in any one of the input data objects (in which
case some indication of what to use for missing values will need to be provided).

These functions and methods are currently under construction. Please let us know if there are
features that you require.

Value

A single value of the same class as the most specific common ancestor (in class terms) of the input
values. This will contain the appropriate combination of the data in the input values.

Methods

The following methods are defined in the BiocGenerics package:

combine(x=ANY, missing) Return the first (x) argument unchanged.

combine(data.frame, data.frame) Combines two data.frame objects so that the resulting data.frame
contains all rows and columns of the original objects. Rows and columns in the returned value
are unique, that is, a row or column represented in both arguments is represented only once
in the result. To perform this operation, combine makes sure that data in shared rows and
columns are identical in the two data.frames. Data differences in shared rows and columns
usually cause an error. combine issues a warning when a column is a factor and the levels of
the factor in the two data.frames are different.

combine(matrix, matrix) Combined two matrix objects so that the resulting matrix contains
all rows and columns of the original objects. Both matricies must have dimnames. Rows
and columns in the returned value are unique, that is, a row or column represented in both
arguments is represented only once in the result. To perform this operation, combine makes
sure that data in shared rows and columns are all equal in the two matricies.

Additional combine methods are defined in the Biobase package for AnnotatedDataFrame, Assay-
Data, MIAME, and eSet objects.

Author(s)

Biocore

See Also

combine,AnnotatedDataFrame,AnnotatedDataFrame-method, combine,AssayData,AssayData-method,
combine,MIAME,MIAME-method, and combine,eSet,eSet-method in the Biobase package for ad-
ditional combine methods.

merge for merging two data frames (or data.frame-like) R objects.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

8 connection-class

Examples

combine
showMethods("combine")
selectMethod("combine", c("ANY", "missing"))
selectMethod("combine", c("data.frame", "data.frame"))
selectMethod("combine", c("matrix", "matrix"))

COMBINING TWO DATA FRAMES

x <- data.frame(x=1:5,

y=factor(letters[1:5], levels=letters[1:8]),
row.names=letters[1:5])

y <- data.frame(z=3:7,
y=factor(letters[3:7], levels=letters[1:8]),
row.names=letters[3:7])

combine(x,y)

w <- data.frame(w=4:8,
y=factor(letters[4:8], levels=letters[1:8]),
row.names=letters[4:8])

combine(w, x, y)

y is converted to ’factor’ with different levels
df1 <- data.frame(x=1:5,y=letters[1:5], row.names=letters[1:5])
df2 <- data.frame(z=3:7,y=letters[3:7], row.names=letters[3:7])
try(combine(df1, df2)) # fails
solution 1: ensure identical levels
y1 <- factor(letters[1:5], levels=letters[1:7])
y2 <- factor(letters[3:7], levels=letters[1:7])
df1 <- data.frame(x=1:5,y=y1, row.names=letters[1:5])
df2 <- data.frame(z=3:7,y=y2, row.names=letters[3:7])
combine(df1, df2)
solution 2: force column to be ’character’
df1 <- data.frame(x=1:5,y=I(letters[1:5]), row.names=letters[1:5])
df2 <- data.frame(z=3:7,y=I(letters[3:7]), row.names=letters[3:7])
combine(df1, df2)

COMBINING TWO MATRICES

m <- matrix(1:20, nrow=5, dimnames=list(LETTERS[1:5], letters[1:4]))
combine(m[1:3,], m[4:5,])
combine(m[1:3, 1:3], m[3:5, 3:4]) # overlap

connection-class S4 connection classes

Description

These are S4 representations of the S3 connection classes in R. They exist only to support method
dispatch on connection types.

density 9

density Kernel density estimation

Description

The generic function density computes kernel density estimates.

NOTE: This man page is for the density S4 generic function defined in the BiocGenerics package.
See ?stats::density for the default method (defined in the stats package). Bioconductor packages
can define specific methods for objects not supported by the default method.

Usage

density(x, ...)

Arguments

x, ... See ?stats::density.

Value

See ?stats::density for the value returned by the default method.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default method.

See Also

stats::density for the default density method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

density,flowClust-method in the flowClust package for the method defined for flowClust objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

density
showMethods("density")
selectMethod("density", "ANY") # the default method

10 duplicated

duplicated Determine duplicate elements

Description

Determines which elements of a vector-like or data-frame-like R object are duplicates of elements
with smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

NOTE: This man page is for the duplicated and anyDuplicated S4 generic functions defined in
the BiocGenerics package. See ?base::duplicated for the default methods (defined in the base
package). Bioconductor packages can define specific methods for objects (typically vector-like or
data-frame-like) not supported by the default method.

Usage

duplicated(x, incomparables=FALSE, ...)
anyDuplicated(x, incomparables=FALSE, ...)

Arguments

x A vector-like or data-frame-like R object.

incomparables, ...
See ?base::duplicated for a description of these arguments.

Value

The default duplicated method (see ?base::duplicated) returns a logical vector of length N where
N is:

• length(x) when x is a vector;

• nrow(x) when x is a data frame.

Specific duplicated methods defined in other Bioconductor packages must also return a logical
vector of the same length as x when x is a vector-like object, and a logical vector with one element
for each row when x is a data-frame-like object.

The default anyDuplicated method (see ?base::duplicated) returns a single non-negative integer
and so must the specific anyDuplicated methods defined in other Bioconductor packages.

anyDuplicated should always behave consistently with duplicated.

See Also

base::duplicated for the default duplicated and anyDuplicated methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

duplicated,Ranges-method in the IRanges package for the method defined for Ranges objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

eval 11

Examples

duplicated
showMethods("duplicated")
selectMethod("duplicated", "ANY") # the default method

anyDuplicated
showMethods("anyDuplicated")
selectMethod("anyDuplicated", "ANY") # the default method

eval Evaluate an (unevaluated) expression

Description

eval evaluates an R expression in a specified environment.

NOTE: This man page is for the eval S4 generic function defined in the BiocGenerics package. See
?base::eval for the default method (defined in the base package). Bioconductor packages can define
specific methods for objects not supported by the default method.

Usage

eval(expr, envir=parent.frame(),
enclos=if (is.list(envir) || is.pairlist(envir))

parent.frame() else baseenv())

Arguments

expr An object to be evaluated. May be any object supported by the default method
(see ?base::eval) or by the additional methods defined in Bioconductor pack-
ages.

envir The environment in which expr is to be evaluated. May be any object supported
by the default method (see ?base::eval) or by the additional methods defined in
Bioconductor packages.

enclos See ?base::eval for a description of this argument.

Value

See ?base::eval for the value returned by the default method.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default method.

See Also

base::eval for the default eval method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

eval,expression,List-method in the IRanges package for the method defined for when the expr and
envir arguments are expression and List objects, respectively.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

12 Extremes

Examples

eval # note the dispatch on ’expr’ and ’envir’ args only
showMethods("eval")
selectMethod("eval", c("ANY", "ANY")) # the default method

Extremes Maxima and minima

Description

pmax, pmin, pmax.int and pmin.int return the parallel maxima and minima of the input values.

NOTE: This man page is for the pmax, pmin, pmax.int and pmin.int S4 generic functions de-
fined in the BiocGenerics package. See ?base::pmax for the default methods (defined in the base
package). Bioconductor packages can define specific methods for objects (typically vector-like or
matrix-like) not supported by the default methods.

Usage

pmax(..., na.rm=FALSE)
pmin(..., na.rm=FALSE)

pmax.int(..., na.rm=FALSE)
pmin.int(..., na.rm=FALSE)

Arguments

... One or more vector-like or matrix-like R objects.

na.rm See ?base::pmax for a description of this argument.

Value

See ?base::pmax for the value returned by the default methods.

Specific methods defined in other Bioconductor packages will typically return an object of the same
class as the input objects.

See Also

base::pmax for the default pmax, pmin, pmax.int and pmin.int methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

pmax,Rle-method in the IRanges package for the pmax method defined for Rle objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

funprog 13

Examples

pmax
showMethods("pmax")
selectMethod("pmax", "ANY") # the default method

pmin
showMethods("pmin")
selectMethod("pmin", "ANY") # the default method

pmax.int
showMethods("pmax.int")
selectMethod("pmax.int", "ANY") # the default method

pmin.int
showMethods("pmin.int")
selectMethod("pmin.int", "ANY") # the default method

funprog Common higher-order functions in functional programming languages

Description

Reduce uses a binary function to successively combine the elements of a given list-like or vector-
like R object and a possibly given initial value. Filter extracts the elements of a list-like or vector-
like R object for which a predicate (logical) function gives true. Find and Position give the first
or last such element and its position in the object, respectively. Map applies a function to the
corresponding elements of given list-like or vector-like R objects.

NOTE: This man page is for the Reduce, Filter, Find, Map and Position S4 generic functions
defined in the BiocGenerics package. See ?base::Reduce for the default methods (defined in the
base package). Bioconductor packages can define specific methods for objects (typically list-like or
vector-like) not supported by the default methods.

Usage

Reduce(f, x, init, right=FALSE, accumulate=FALSE)
Filter(f, x)
Find(f, x, right=FALSE, nomatch=NULL)
Map(f, ...)
Position(f, x, right=FALSE, nomatch=NA_integer_)

Arguments

f, init, right, accumulate, nomatch
See ?base::Reduce for a description of these arguments.

x A list-like or vector-like R object.
... One or more list-like or vector-like R objects.

Value

See ?base::Reduce for the value returned by the default methods.

Specific Reduce methods defined in other Bioconductor packages should also return a single inte-
ger.

14 get

See Also

base::Reduce for the default Reduce, Filter, Find, Map and Position methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

Reduce,List-method in the IRanges package for the Reduce method defined for List objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

Reduce # note the dispatch on the ’x’ arg only
showMethods("Reduce")
selectMethod("Reduce", "ANY") # the default method

Filter # note the dispatch on the ’x’ arg only
showMethods("Filter")
selectMethod("Filter", "ANY") # the default method

Find # note the dispatch on the ’x’ arg only
showMethods("Find")
selectMethod("Find", "ANY") # the default method

Map # note the dispatch on the ’...’ arg only
showMethods("Map")
selectMethod("Map", "ANY") # the default method

Position # note the dispatch on the ’x’ arg only
showMethods("Position")
selectMethod("Position", "ANY") # the default method

get Return the value of a named object

Description

Search for an R object with a given name and return it.

NOTE: This man page is for the get and mget S4 generic functions defined in the BiocGenerics
package. See ?base::get for the default methods (defined in the base package). Bioconductor
packages can define specific methods for objects (list-like or environment-like) not supported by
the default methods.

Usage

get(x, pos=-1, envir=as.environment(pos), mode="any", inherits=TRUE)
mget(x, envir, mode="any",

ifnotfound=list(function(x)
stop(paste0("value for ’", x, "’ not found"),

call.=FALSE)),
inherits=FALSE)

image 15

Arguments

x For get: A variable name (or, more generally speaking, a key), given as a single
string.
For mget: A vector of variable names (or keys).

envir Where to look for the key(s). Typically a list-like or environment-like object.
pos, mode, inherits, ifnotfound

See ?base::get for a description of these arguments.

Details

See ?base::get for details about the default methods.

Value

For get: The value corresponding to the specified key.

For mget: The list of values corresponding to the specified keys. The returned list must have one
element per key, and in the same order as in x.

See ?base::get for the value returned by the default methods.

See Also

base::get for the default get and mget methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

get,ANY,AnnDbBimap,missing-method in the AnnotationDbi package for the get method defined
for AnnDbBimap objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

get # note the dispatch on the ’x’, ’pos’ and ’envir’ args only
showMethods("get")
selectMethod("get", c("ANY", "ANY", "ANY")) # the default method

mget # note the dispatch on the ’x’ and ’envir’ args only
showMethods("mget")
selectMethod("mget", c("ANY", "ANY")) # the default method

image Display a color image

Description

Creates a grid of colored or gray-scale rectangles with colors corresponding to the values in z. This
can be used to display three-dimensional or spatial data aka images.

NOTE: This man page is for the image S4 generic function defined in the BiocGenerics package.
See ?graphics::image for the default method (defined in the graphics package). Bioconductor
packages can define specific methods for objects not supported by the default method.

16 lapply

Usage

image(x, ...)

Arguments

x, ... See ?graphics::image.

Details

See ?graphics::image for the details.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default method.

See Also

graphics::image for the default image method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

image,FeatureSet-method in the oligo package for the method defined for FeatureSet objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

image
showMethods("image")
selectMethod("image", "ANY") # the default method

lapply Apply a function over a list-like or vector-like R object

Description

lapply returns a list of the same length as X, each element of which is the result of applying FUN
to the corresponding element of X.

sapply is a user-friendly version and wrapper of lapply by default returning a vector, matrix or, if
simplify="array", an array if appropriate, by applying simplify2array(). sapply(x, f, simplify=FALSE, USE.NAMES=FALSE)
is the same as lapply(x, f).

NOTE: This man page is for the lapply and sapply S4 generic functions defined in the BiocGenerics
package. See ?base::lapply for the default methods (defined in the base package). Bioconductor
packages can define specific methods for objects (typically list-like or vector-like) not supported by
the default methods.

Usage

lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE)

mapply 17

Arguments

X A list-like or vector-like R object.

FUN, ..., simplify, USE.NAMES
See ?base::lapply for a description of these arguments.

Value

See ?base::lapply for the value returned by the default methods.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default methods. In particular, lapply and sapply(simplify=FALSE) should always return
a list.

See Also

base::lapply for the default lapply and sapply methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

lapply,List-method in the IRanges package for the lapply method defined for List objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

lapply # note the dispatch on the ’X’ arg only
showMethods("lapply")
selectMethod("lapply", "ANY") # the default method

sapply # note the dispatch on the ’X’ arg only
showMethods("sapply")
selectMethod("sapply", "ANY") # the default method

mapply Apply a function to multiple list-like or vector-like arguments

Description

mapply is a multivariate version of sapply. mapply applies FUN to the first elements of each ...
argument, the second elements, the third elements, and so on. Arguments are recycled if necessary.

NOTE: This man page is for the mapply S4 generic function defined in the BiocGenerics package.
See ?base::mapply for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically list-like or vector-like) not supported by the default
methods.

Usage

mapply(FUN, ..., MoreArgs=NULL, SIMPLIFY=TRUE, USE.NAMES=TRUE)

18 nrow

Arguments

FUN, MoreArgs, SIMPLIFY, USE.NAMES
See ?base::mapply for a description of these arguments.

... One or more list-like or vector-like R objects of strictly positive length, or all of
zero length.

Value

See ?base::mapply for the value returned by the default method.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default method.

See Also

base::mapply for the default mapply method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

mapply,List-method in the IRanges package for the mapply method defined for List objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

mapply # note the dispatch on the ’...’ arg only
showMethods("mapply")
selectMethod("mapply", "ANY") # the default method

nrow The number of rows/columns of an array-like object

Description

Return the number of rows or columns present in an array-like R object.

NOTE: This man page is for the nrow, ncol, NROW and NCOL S4 generic functions defined in
the BiocGenerics package. See ?base::nrow for the default methods (defined in the base package).
Bioconductor packages can define specific methods for objects (typically matrix- or array-like) not
supported by the default methods.

Usage

nrow(x)
ncol(x)
NROW(x)
NCOL(x)

Arguments

x A matrix- or array-like R object.

order 19

Value

A single integer or NULL.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default methods.

See Also

base::nrow for the default nrow, ncol, NROW and NCOL methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

nrow,DataFrame-method in the IRanges package for the nrow method defined for DataFrame ob-
jects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

nrow
showMethods("nrow")
selectMethod("nrow", "ANY") # the default method

ncol
showMethods("ncol")
selectMethod("ncol", "ANY") # the default method

NROW
showMethods("NROW")
selectMethod("NROW", "ANY") # the default method

NCOL
showMethods("NCOL")
selectMethod("NCOL", "ANY") # the default method

order Ordering permutation

Description

order returns a permutation which rearranges its first argument into ascending or descending order,
breaking ties by further arguments.

NOTE: This man page is for the order S4 generic function defined in the BiocGenerics package.
See ?base::order for the default method (defined in the base package). Bioconductor packages can
define specific methods for objects (typically vector-like) not supported by the default method.

Usage

order(..., na.last=TRUE, decreasing=FALSE)

20 paste

Arguments

... One or more vector-like R objects, all of the same length.
na.last, decreasing

See ?base::order for a description of these arguments.

Value

The default method (see ?base::order) returns an integer vector of length N where N is the common
length of the input objects. This integer vector represents a permutation of N elements and can be
used to rearrange the first argument in ... into ascending or descending order (by subsetting it).

Specific methods defined in other Bioconductor packages must also return an integer vector repre-
senting a permutation of N elements.

Note

TO DEVELOPPERS: Here are 2 common pitfalls when implementing an order method:

• order(x, decreasing=TRUE) is not equivalent to rev(order(x));

• It should be made "stable" for consistent behavior across platforms and consistency with
base::order(). Note that C qsort() is not "stable" so order methods that use qsort() at the
C-level need to ultimately break ties by position (this is generally done by adding a little extra
code at the end of the comparison function used in the calls to qsort()).

See Also

base::order for the default order method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

order,Ranges-method in the IRanges package for the method defined for Ranges objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

order
showMethods("order")
selectMethod("order", "ANY") # the default method

paste Concatenate strings

Description

paste concatenates vectors of strings or vector-like R objects containing strings.

NOTE: This man page is for the paste S4 generic function defined in the BiocGenerics package.
See ?base::paste for the default method (defined in the base package). Bioconductor packages can
define specific methods for objects (typically vector-like objects containing strings) not supported
by the default method.

rep 21

Usage

paste(..., sep=" ", collapse=NULL)

Arguments

... One or more vector-like R objects containing strings.

sep, collapse See ?base::paste for a description of these arguments.

Value

See ?base::paste for the value returned by the default method.

Specific methods defined in other Bioconductor packages will typically return an object of the same
class as the input objects.

See Also

base::paste for the default paste method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

paste,Rle-method in the IRanges package for the method defined for Rle objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

paste
showMethods("paste")
selectMethod("paste", "ANY") # the default method

rep Replicate elements of a vector-like R object

Description

rep.int replicates the elements in x.

NOTE: This man page is for the rep.int S4 generic function defined in the BiocGenerics package.
See ?base::rep.int for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically vector-like) not supported by the default method.

Usage

Unlike the standard rep.int() function defined in base (default method),
the generic function described here have a ’...’ argument (instead of
’times’).
rep.int(x, ...)

Arguments

x R object (typically vector-like).

... Additional arguments, for use in specific rep.int methods.

22 residuals

Value

See ?base::rep.int for the value returned by the default method.

Specific methods defined in other Bioconductor packages will typically return an object of the same
class as the input object.

See Also

base::rep.int for the default rep.int, intersect, and setdiff methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

rep.int,Rle-method in the IRanges package for the method defined for Rle objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

rep.int
showMethods("rep.int")
selectMethod("rep.int", "ANY") # the default method

residuals Extract model residuals

Description

residuals is a generic function which extracts model residuals from objects returned by modeling
functions.

NOTE: This man page is for the residuals S4 generic function defined in the BiocGenerics package.
See ?stats::residuals for the default method (defined in the stats package). Bioconductor packages
can define specific methods for objects not supported by the default method.

Usage

residuals(object, ...)

Arguments

object, ... See ?stats::residuals.

Value

Residuals extracted from the object object.

See Also

stats::residuals for the default residuals method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

residuals,PLMset-method in the affyPLM package for the method defined for PLMset objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

row+colnames 23

Examples

residuals
showMethods("residuals")
selectMethod("residuals", "ANY") # the default method

row+colnames Row and column names

Description

Retrieve the row or column names of a matrix-like R object.

NOTE: This man page is for the rownames and colnames S4 generic functions defined in the
BiocGenerics package. See ?base::rownames for the default methods (defined in the base package).
Bioconductor packages can define specific methods for objects (typically matrix-like) not supported
by the default methods.

Usage

rownames(x, do.NULL=TRUE, prefix="row")
colnames(x, do.NULL=TRUE, prefix="col")

Arguments

x A matrix-like R object.
do.NULL, prefix See ?base::rownames for a description of these arguments.

Value

NULL or a character vector of length nrow(x) for rownames and ncol(x) for colnames(x). See
?base::rownames for more information about the default methods.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default methods.

See Also

base::rownames for the default rownames and colnames methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

rownames,DataFrame-method in the IRanges package for the rownames method defined for DataFrame
objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

rownames # note the dispatch on the ’x’ arg only
showMethods("rownames")
selectMethod("rownames", "ANY") # the default method

colnames # note the dispatch on the ’x’ arg only
showMethods("colnames")
selectMethod("colnames", "ANY") # the default method

24 sets

sets Set operations

Description

Performs set union, intersection and (asymmetric!) difference on two vector-like R objects.

NOTE: This man page is for the union, intersect and setdiff S4 generic functions defined in the
BiocGenerics package. See ?base::union for the default methods (defined in the base package).
Bioconductor packages can define specific methods for objects (typically vector-like) not supported
by the default methods.

Usage

union(x, y, ...)
intersect(x, y, ...)
setdiff(x, y, ...)

Arguments

x, y R objects of the same class (typically a vector-like class).

... Additional arguments, for use in specific methods.

Value

See ?base::union for the value returned by the default methods.

Specific methods defined in other Bioconductor packages will typically return an object of the same
class as the input objects.

Note

The default methods (defined in the base package) only take 2 arguments. We’ve added the ... ar-
gument to the generic functions defined in the BiocGenerics package so they can be called with
an arbitrary number of effective arguments. For union or intersect, this typically allows Biocon-
ductor packages to define methods that compute the union or intersection of more than 2 objects.
However, for setdiff , which is conceptually a binary operation, this typically allows methods to
add extra arguments for controlling/altering the behavior of the operation. Like for example the
ignore.strand argument supported by the setdiff method for GRanges objects (defined in the Ge-
nomicRanges package). (Note that the union and intersect methods for those objects also support
the ignore.strand argument.)

See Also

base::union for the default union, intersect, and setdiff methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

union,GRanges,GRanges-method in the GenomicRanges package for the union method defined for
GRanges objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

strand 25

Examples

union
showMethods("union")
selectMethod("union", c("ANY", "ANY")) # the default method

intersect
showMethods("intersect")
selectMethod("intersect", c("ANY", "ANY")) # the default method

setdiff
showMethods("setdiff")
selectMethod("setdiff", c("ANY", "ANY")) # the default method

strand Accessing strand information

Description

Get or set the strand information contained in an object.

Usage

strand(x, ...)
strand(x, ...) <- value

Arguments

x An object containing strand information.

... Additional arguments, for use in specific methods.

value The strand information to set on x.

Note

All the strand methods defined in the GenomicRanges package use the same set of 3 values (levels)
to specify the strand of a genomic location: +, -, and *. * is used when the exact strand of the
location is unknown, or irrelevant, or when the "feature" at that location belongs to both strands.

See Also

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

strand,GRanges-method in the GenomicRanges package for the method defined for GRanges ob-
jects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

26 table

Examples

strand
showMethods("strand")

library(GenomicRanges)
showMethods("strand")
selectMethod("strand", "missing")
strand()

table Cross tabulation and table creation

Description

table uses the cross-classifying factors to build a contingency table of the counts at each combina-
tion of factor levels.

NOTE: This man page is for the table S4 generic function defined in the BiocGenerics package.
See ?base::table for the default method (defined in the base package). Bioconductor packages can
define specific methods for objects not supported by the default method.

Usage

table(...)

Arguments

... One or more R objects which can be interpreted as factors (including character
strings), or a list (or data frame) whose components can be so interpreted.

Value

See ?base::table for the value returned by the default method.

Specific methods defined in other Bioconductor packages should also return the type of object
returned by the default method.

See Also

base::table for the default table method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

table,Rle-method in the IRanges package for the method defined for Rle objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

table
showMethods("table")
selectMethod("table", "ANY") # the default method

tapply 27

tapply Apply a function over a ragged array

Description

tapply applies a function to each cell of a ragged array, that is to each (non-empty) group of values
given by a unique combination of the levels of certain factors.

NOTE: This man page is for the tapply S4 generic function defined in the BiocGenerics package.
See ?base::tapply for the default method (defined in the base package). Bioconductor packages can
define specific methods for objects (typically list-like or vector-like) not supported by the default
methods.

Usage

tapply(X, INDEX, FUN=NULL, ..., simplify=TRUE)

Arguments

X A list-like or vector-like R object.

INDEX, FUN, ..., simplify
See ?base::tapply for a description of these arguments.

Value

See ?base::tapply for the value returned by the default method.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default method.

See Also

base::tapply for the default tapply method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

tapply,Vector-method in the IRanges package for the tapply method defined for Vector objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

tapply # note the dispatch on the ’X’ arg only
showMethods("tapply")
selectMethod("tapply", "ANY") # the default method

28 unique

unique Extract unique elements

Description

unique returns an object of the same class as x (typically a vector-like, data-frame-like, or array-like
R object) but with duplicate elements/rows removed.

NOTE: This man page is for the unique S4 generic function defined in the BiocGenerics package.
See ?base::unique for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically vector-like or data-frame-like) not supported by
the default method.

Usage

unique(x, incomparables=FALSE, ...)

Arguments

x A vector-like, data-frame-like, or array-like R object.

incomparables, ...
See ?base::unique for a description of these arguments.

Value

See ?base::unique for the value returned by the default method.

Specific methods defined in other Bioconductor packages will typically return an object of the same
class as the input object.

unique should always behave consistently with BiocGenerics::duplicated.

See Also

base::unique for the default unique method.

BiocGenerics::duplicated for determining duplicate elements.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

unique,Ranges-method in the IRanges package for the method defined for Ranges objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

unique
showMethods("unique")
selectMethod("unique", "ANY") # the default method

updateObject 29

updateObject Update an object to its current class definition

Description

updateObject is a generic function that returns an instance of object updated to its current class
definition.

Usage

updateObject(object, ..., verbose=FALSE)

Related utilities:
updateObjectFromSlots(object, objclass=class(object), ..., verbose=FALSE)
getObjectSlots(object)

Arguments

object Object to be updated for updateObject and updateObjectFromSlots.
Object for slot information to be extracted from for getObjectSlots.

... Additional arguments, for use in specific updateObject methods.

verbose TRUE or FALSE, indicating whether information about the update should be
reported. Use message to report this information.

objclass Optional character string naming the class of the object to be created.

Details

Updating objects is primarily useful when an object has been serialized (e.g., stored to disk) for
some time (e.g., months), and the class definition has in the mean time changed. Because of the
changed class definition, the serialized instance is no longer valid.

updateObject requires that the class of the returned object be the same as the class of the argument
object, and that the object is valid (see validObject). By default, updateObject has the following
behaviors:

updateObject(ANY, ..., verbose=FALSE) By default, updateObject uses heuristic methods to
determine whether the object should be the ‘new’ S4 type (introduced in R 2.4.0), but is not.
If the heuristics indicate an update is required, the updateObjectFromSlots function tries
to update the object. The default method returns the original S4 object or the successfully
updated object, or issues an error if an update is required but not possible. The optional
named argument verbose causes a message to be printed describing the action. Arguments ...
are passed to updateObjectFromSlots.

updateObject(list, ..., verbose=FALSE) Visit each element in list, applying updateObject(list[[elt]], ..., verbose=verbose).

updateObject(environment, ..., verbose=FALSE) Visit each element in environment, apply-
ing updateObject(environment[[elt]], ..., verbose=verbose)

updateObjectFromSlots(object, objclass=class(object), ..., verbose=FALSE)
is a utility function that identifies the intersection of slots defined in the object instance and objclass
definition. The corresponding elements in object are then updated (with updateObject(elt, ..., verbose=verbose))
and used as arguments to a call to new(class, ...), with ... replaced by slots from the original object.

30 updateObject

If this fails, updateObjectFromSlots then tries new(class) and assigns slots of object to the newly
created instance.

getObjectSlots(object) extracts the slot names and contents from object. This is useful when
object was created by a class definition that is no longer current, and hence the contents of object
cannot be determined by accessing known slots.

Value

updateObject returns a valid instance of object.

updateObjectFromSlots returns an instance of class objclass.

getObjectSlots returns a list of named elements, with each element corresponding to a slot in
object.

See Also

updateObjectTo in the Biobase package for updating an object to the class definition of a template
(might be useful for updating a virtual superclass).

validObject for testing the validity of an object.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

updateObject
showMethods("updateObject")
selectMethod("updateObject", "ANY") # the default method

library(Biobase)
update object, same class
data(sample.ExpressionSet)
obj <- updateObject(sample.ExpressionSet)

setClass("UpdtA", representation(x="numeric"), contains="data.frame")
setMethod("updateObject", "UpdtA",

function(object, ..., verbose=FALSE)
{

if (verbose)
message("updateObject object = ’A’")

object <- callNextMethod()
object@x <- -object@x
object

}
)

a <- new("UpdtA", x=1:10)
See steps involved
updateObject(a)

removeMethod("updateObject", "UpdtA")
removeClass("UpdtA")

weights 31

weights Extract model weights

Description

weights is a generic function which extracts fitting weights from objects returned by modeling
functions.

NOTE: This man page is for the weights S4 generic function defined in the BiocGenerics package.
See ?stats::weights for the default method (defined in the stats package). Bioconductor packages
can define specific methods for objects not supported by the default method.

Usage

weights(object, ...)

Arguments

object, ... See ?stats::weights.

Value

Weights extracted from the object object.

See ?stats::weights for the value returned by the default method.

Specific methods defined in other Bioconductor packages should behave as consistently as possible
with the default method.

See Also

stats::weights for the default weights method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

weights,PLMset-method in the affyPLM package for the method defined for PLMset objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

weights
showMethods("weights")
selectMethod("weights", "ANY") # the default method

32 xtabs

xtabs Cross tabulation

Description

xtabs creates a contingency table (optionally a sparse matrix) from cross-classifying factors, usually
contained in a data-frame-like object, using a formula interface.

NOTE: This man page is for the xtabs S4 generic function defined in the BiocGenerics package.
See ?stats::xtabs for the default method (defined in the stats package). Bioconductor packages can
define specific methods for objects not supported by the default method.

Usage

xtabs(formula=~., data=parent.frame(), subset, sparse=FALSE,
na.action, exclude=c(NA, NaN), drop.unused.levels=FALSE)

Arguments

formula, subset, sparse, na.action, exclude, drop.unused.levels
See ?stats::xtabs for a description of these arguments.

data A data-frame-like R object.

Value

See ?stats::xtabs for the value returned by the default method.

Specific methods defined in other Bioconductor packages should also return the type of object
returned by the default method.

See Also

stats::xtabs for the default xtabs method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

xtabs,DataTable-method in the IRanges package for the method defined for DataTable objects.

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

xtabs # note the dispatch on the ’data’ arg only
showMethods("xtabs")
selectMethod("xtabs", "ANY") # the default method

Index

∗Topic classes
connection-class, 8

∗Topic methods
annotation, 4
boxplot, 4
cbind, 5
combine, 6
density, 9
duplicated, 10
eval, 11
Extremes, 12
funprog, 13
get, 14
image, 15
lapply, 16
mapply, 17
nrow, 18
order, 19
paste, 20
rep, 21
residuals, 22
row+colnames, 23
sets, 24
strand, 25
table, 26
tapply, 27
unique, 28
updateObject, 29
weights, 31
xtabs, 32

∗Topic package
BiocGenerics-package, 2

AnnDbBimap, 15
AnnotatedDataFrame, 7
annotation, 3, 4
annotation,eSet-method, 4
annotation<- (annotation), 4
anyDuplicated, 2
anyDuplicated (duplicated), 10
AssayData, 7

BiocGenerics, 4–7, 9–12, 14–28, 30–32
BiocGenerics (BiocGenerics-package), 2

BiocGenerics-package, 2
boxplot, 3, 4, 4, 5
boxplot,FeatureSet-method, 5
bzfile-class (connection-class), 8

cbind, 2, 3, 5, 5, 6
cbind,DataFrame-method, 6
characterORconnection-class

(connection-class), 8
colnames, 2
colnames (row+colnames), 23
combine, 3, 6
combine,AnnotatedDataFrame,AnnotatedDataFrame-method,

7
combine,ANY,missing-method (combine), 6
combine,AssayData,AssayData-method, 7
combine,data.frame,data.frame-method

(combine), 6
combine,eSet,eSet-method, 7
combine,matrix,matrix-method (combine),

6
combine,MIAME,MIAME-method, 7
connection-class, 8

DataFrame, 6, 19, 23
DataTable, 32
density, 3, 9, 9
density,flowClust-method, 9
dim, 3
duplicated, 2, 10, 10, 28
duplicated,Ranges-method, 10

eSet, 4, 7
eval, 2, 11, 11
eval,expression,List-method, 11
expression, 11
Extremes, 12

factor, 7
FeatureSet, 5, 16
file-class (connection-class), 8
Filter, 2
Filter (funprog), 13
Find, 2

33

34 INDEX

Find (funprog), 13
flowClust, 9
funprog, 13

get, 2, 14, 14, 15
get,ANY,AnnDbBimap,missing-method, 15
getObjectSlots (updateObject), 29
GRanges, 24, 25
groupGeneric, 3
gzcon-class (connection-class), 8
gzfile-class (connection-class), 8

image, 3, 15, 15, 16
image,FeatureSet-method, 16
InternalMethods, 3
intersect, 2
intersect (sets), 24

lapply, 2, 16, 16, 17
lapply,List-method, 17
length, 3
List, 11, 14, 17, 18

Map, 2
Map (funprog), 13
mapply, 2, 17, 17, 18
mapply,List-method, 18
Math, 3
merge, 7
message, 29
mget, 2
mget (get), 14
MIAME, 7

NCOL, 2
NCOL (nrow), 18
ncol, 2, 23
ncol (nrow), 18
NROW, 2
NROW (nrow), 18
nrow, 2, 18, 18, 19, 23
nrow,DataFrame-method, 19

Ops, 3
order, 2, 19, 19, 20
order,Ranges-method, 20

paste, 2, 20, 20, 21
paste,Rle-method, 21
pipe-class (connection-class), 8
PLMset, 22, 31
pmax, 2, 12
pmax (Extremes), 12
pmax,Rle-method, 12

pmax.int, 2
pmin, 2
pmin (Extremes), 12
pmin.int, 2
Position, 2
Position (funprog), 13

Ranges, 10, 20, 28
rbind, 2
rbind (cbind), 5
Reduce, 2, 13, 14
Reduce (funprog), 13
Reduce,List-method, 14
rep, 21
rep.int, 2, 21, 22
rep.int,Rle-method, 22
residuals, 3, 22, 22
residuals,PLMset-method, 22
Rle, 12, 21, 22, 26
row+colnames, 23
rownames, 2, 23
rownames (row+colnames), 23
rownames,DataFrame-method, 23

S4groupGeneric, 3
sapply, 2, 17
sapply (lapply), 16
selectMethod, 3–7, 9–12, 14–28, 30–32
setdiff, 2
setdiff (sets), 24
setGeneric, 3
setMethod, 3
sets, 24
showMethods, 3–7, 9–12, 14–28, 30–32
sockconn-class (connection-class), 8
strand, 3, 25
strand,GRanges-method, 25
strand<- (strand), 25

table, 3, 26, 26
table,Rle-method, 26
tapply, 3, 27, 27
tapply,Vector-method, 27
terminal-class (connection-class), 8
textConnection-class (connection-class), 8

union, 2, 24
union (sets), 24
union,GRanges,GRanges-method, 24
unique, 3, 28, 28
unique,Ranges-method, 28
unz-class (connection-class), 8
updateObject, 3, 29

INDEX 35

updateObject,ANY-method
(updateObject), 29

updateObject,environment-method
(updateObject), 29

updateObject,list-method (updateObject),
29

updateObjectFromSlots (updateObject), 29
updateObjectTo, 30
url-class (connection-class), 8

validObject, 29, 30
Vector, 27

weights, 3, 31, 31
weights,PLMset-method, 31

xtabs, 3, 32, 32
xtabs,DataTable-method, 32

	BiocGenerics-package
	annotation
	boxplot
	cbind
	combine
	connection-class
	density
	duplicated
	eval
	Extremes
	funprog
	get
	image
	lapply
	mapply
	nrow
	order
	paste
	rep
	residuals
	row+colnames
	sets
	strand
	table
	tapply
	unique
	updateObject
	weights
	xtabs
	Index

